徐玲老师个人简介

文章来源:bat365在线平台官网登录发布日期:2021-04-12浏览次数:5686


 徐玲,女,汉族,博士,副教授,硕士研究生导师。2017.12—2019.12,在国防科技大学数学系博士后流动站学习工作,主要研究方向为无穷维动力系统;随机动力系统。


联系方式:

址: 甘肃省兰州市安宁区安宁东路967号  邮编:730070          

办公地点: bat365在线平台官网登录致勤楼A1609室                       

E-mail:xuling@nwnu.edu.cn                                      


科研项目:

  1. 主持甘肃省高等学校创新基金项目“非自治耦合吊桥方程动力学的研究”

(编号:2023B-062),在研

  1. 主持甘肃省青年科技基金计划项目“随机吊桥方程解的渐近性态”

(编号:17JR5RA069),已结题

  1. 主持高等学校科研项目“带有乘积噪声的随机吊桥方程解的渐近行为”

(编号: 2017B-90) ,已结题

  1. 参与国家自然科学基金项目“时标动态方程边值问题解的分歧结构研究”

(编号:11301059),已结题

  1. 参与国家自然科学基金项目“随机非线性发展方程的随机吸引子研究”

(编号:11561064),已结题


奖励和荣誉:

1.2020.12 荣获bat365在线平台官网登录第六届青年教师教学创新大赛理科组三等奖;

2.2018.12 荣获bat365在线平台官网登录第五届青年教师教学大赛理科组三等奖;

3. 2020.09 指导“高教社”杯全国大学生数学建模竞赛荣获甘肃赛区本科组一等奖;

4. 2023.09 指导“高教社”杯全国大学生数学建模竞赛荣获甘肃赛区本科组二等奖;

5. 2022.12 指导全国大学生数学竞赛荣获一等奖1人次,三等奖3人次;

6. 2021.03 主持《高等数学》校级参与式研讨课程教学改革项目;

7. 2020.12 获得bat365在线平台官网登录第四届教学科研“双星”计划;

8. 2023.01 主持《高等数学》校级课程思政示范课程;

9. 2022.04 主持《高等数学》校级高等教育教学成果培育项目;

10. 2021.04 主持《高等数学》线上线下混合式校级教学团队.

发表的部分学术论文:

[1] Ling Xu, Jianhua Huang, Qiaozhen Ma, Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive noise, Discrete and Continuous Dynamical Systems - B, 2022, 27 (11) :6323-6351. (SCI)

[2]Ling Xu, Jianhua Huang, Qiaozhen Ma, Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory, Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. (SCI)

[3]Ling Xu, Runjie Liu, Xue Bai, Random exponential attractor for stochastic non-autonomous suspension bridge equation with linear multiplication white noise, Journal of Mathematical Research with Applications, 2024, 44 (1) :81-112.

[4]Ling Xu, Qiaozhen Ma, Upper semicontinuity of random attractor for a Kirchhoff type suspension bridge equation with strong damping and white noise, Taiwanese Journal of Mathematics202024(4):911-935. (SCI)

[5]Ling Xu, Jianhua Huang, Qiaozhen Ma, Random attractors for the stochastic coupled suspension bridge equations of Kirchhoff-type, Advances in Difference Equations, (2019), 2019:416 , 20 pp. (SCI)

[6] Qiaozhen Ma, Ling Xu, Random attractors for the coupled suspension bridge equations with white noises, Appl. Math. Comput., 306 (2017) 3848.

[7] Qiaozhen Ma, Ling Xu, Random attractors for the extensible suspension bridge equation with white noise, Comput. Math. Appl., 70 (2015) 2895–2903.

[8]Ling Xu, Qiaozhen Ma, Existence of random attractors for the floating beam equation with strong damping and white noise, Bound. Value Probl.,2015, 2015: 126, 13 pp..

[9]Ling Xu, Qiaozhen Ma, Existence of the uniform attractors for a non-autonomous modified Swift-Hohenberg equation,  Adv. Difference Equ.,2015, 2015: 153, 11 pp..

[10] Qiaozhen Ma, Ling Xu,  Yanjun Zhang, Asymptotic behavior of the solution to nonclassical diffusion equations with fading memory on the whole space , (Chinese) Acta Math. Sci. Ser. A Chin. Ed.,2016, 36A(1):36–48. 

[11] Xiaobin Yao, Qiaozhen Ma, Ling Xu, Global attractors for a Kirchhoff type plate  equation with memory, Kodai Mathematical Journal, 40(2017) 63–78.

[12] Qiaozhen Ma, Xiaoping Wang, Ling Xu, Existence and regularity of time-dependent global attractors for the nonclassical reaction-diffusion equations with lower forcing term, Bound. Value Probl., 2016, 2016: 10, 11 pp..

[13] Eshag Mohamed Ahmed, Ali Dafallah Abdelmajid, Ling Xu, Qiaozhen Ma, Random attractors for stochastic Reaction-Diffusion equations with distribution derivatives on unbounded domains,Applied Mathematics, (6)2015, 1790–1807.

[14] Ruyun Ma, Ling Xu,  Existence of positive solutions of a nonlinear fourth-order boundary value problem,  Appl. Math. Lett. , 23 (2010) 537–543.

[15]LingXu, Multiplicity results for fourth-order boundary-value problem at resonance with variable coefficients, Electron. J. Differential Equations2008, No. 100, 8 pp. 

[16] Ling Xu, Lower and upper solution methods and the solvability of a three-point boundary value problem at resonance. (Chinese) J. Shandong Univ. Nat. Sci. ,

43 (2008), no. 5,6 pp.